
DendryScope: Narrative Designer Support via Symbolic Analysis

Jasmine Otto1, Autumn Chen2, Adam M. Smith1

1University of California Santa Cruz
2Independent

jtotto@ucsc.edu, cchen.intfic@gmail.com, amsmith@ucsc.edu

Abstract

Quality-based narratives (QBN) are hypertexts with extensive
implicit linked structure. The observation of one passage can
have non-obvious long-range implications for the reachability
of other passages, which poses an authoring challenge. To
help narrative designers address this issue, we produced an
interface which visually summarizes all possible playtraces.
Our interface leverages answer set programming to produce
a query language over possible playtraces, allowing narrative
designers to drill down to interesting scenarios. We introduce
this interface through the DendryScope tool, which accepts
most QBNs written in the Dendry language. We evaluated
DendryScope by interviewing four narrative designers as they
used the tool to explore Bee, a notable QBN written by Emily
Short.

Introduction
Narrative designers are interested in creating works of in-
teractive digital narrative (IDN) that can be enjoyed across
multiple playthroughs by many readers, who are given some
agency in shaping the arrangement of scenes they will en-
counter, and even led to believe they can control the outcome
of the story.

Extensive prior work in IDN discusses the authoring chal-
lenges inherent to this medium Millard and Hargood (2021).
Calls for tool assistance in IDEs (Bernstein, Millard, and
Weal 2002) have thus far been taken up within the IDN
community, especially by narrative designers with strongly
computer science backgrounds. At times, the specific needs
of playtesting been discussed in the AI literature, which
we discuss further in Background. This paper argues that
quality-based narrative (QBN) is a particularly robust sub-
set of IDN, and demonstrates the power of symbolic AI tools
for addressing practicing narrative designers’ actual needs.

In this work, we define skeins of playtraces in terms of an-
swer set programming queries (ASP queries) that describe
properties of certain playtraces. We have implemented a
novel creative interface (Deterding et al. (2017)) for a sub-
set of ASP queries, designed to empower narrative designers
to reason about complex works of IDN. Building on the de-
sign space approach advocated by Smith and Mateas (2011),
DendryScope enables narrative designers to manipulate the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

design space of skeins in a given work of IDN. Our research
implementation deals specifically with quality-based narra-
tives written in the Dendry language (Millington and Chen
2015).

This paper introduces the four following research contri-
butions, which each build on each other, and apply symbolic
artificial intelligence to key challenges in the production of
interactive digital narratives (IDN).

• A transpiler from Dendry to the ASP domain. Each
space of solutions in the domain of a given IDN, given
a certain query, is a skein of playtraces.

• The DendryScope query language, where each query
is a set of ASP constraints authored by the narrative
designer. We foresee query sharing between designers
as enabling continuous integration for IDN, and other
novel forms of testing and collaboration.

• An inventory of seven tasks performed by narrative de-
signers who are playtesting an IDN, especially in the
context of sculptural hypertext (with discrete passages
and implicit links).

• The heatmap interface to a skein, which is a direct
manipulation interface for novel DendryScope queries.
This interface allows narrative designers without prior
ASP knowledge to ‘drill down’ through the families of
possible playtraces in a Dendry game.

Figure 1 summarizes these contributions in the context
of a DendryScope-driven playtesting workflow, using the
acclaimed IDN Bee (Short 2012) as the object of study.
We conducted four expert interviews to investigate this pro-
posed workflow. The designer tasks we gathered explicate
how DendryScope queries address the challenge of reason-
ing about hundreds of thousands of possible playtraces.

Background
20 years ago, the authors of Card Shark (Bernstein, Mil-
lard, and Weal 2002) called for tighter loops between author-
ing and playtesting in sculptural hypertext. Our playtesting
tool supports narrative designers’ existing authoring strate-
gies for IDN, which allow them to skillfully reason about
player retellings, replay stories (Mitchell (2022)), and other
forms of play in and around the story volume (Karth, Junius,
and Kreminski (2022)).



Figure 1: Diagram of a typical DendryScope workflow. Ex-
perts may use DendryScope to ingest the source of their
QBN (in this case, Bee) and help them to envision the story
volume accessible to players. Components shown in black
are contributions of this paper, including: a Dendry to ASP
compiler, an isomorphism between ASP queries and ‘skeins’
of playtraces, and the heatmap representation of a skein.

Grinblat describes the story volume of a given IDN as
constructed in the player’s mind through ’reparative play’
in the course of one or more playthroughs Grinblat, Man-
ning, and Kreminski (2021). The narrative designer, in the
course of playtesting their IDN, is not only looking for bugs
(i.e. obvious narrative failures), but also to emulate this pro-
cess of story volume construction (Fig. 1). In this section, we
will discuss the authoring formalism of quality-based nar-
rative (QBN), contexts in which QBN is used, and how it
enables automated symbolic playtesting that can assist with
story volume construction.

Situating Quality-Based Narrative
Sculptural hypertexts are IDNs constructed from discrete
passages, which are implicitly linked by preconditions and
postconditions (Figure 2). A QBN is a sculptural hypertext
whose world model is a string-int dictionary; this helps limit
spurious complexity in the preconditions of each storylet (as
discussed by Kreminski and Wardrip-Fruin (2018)). Practi-
tioners of QBN call these dictionary keys qualities; each has
an integer value that changes over time, as the player tra-
verses passages with relevant postconditions. The value of a
quality defaults to 0, and is often glossed by a string.

Quality-based narratives form a rich narrative substrate
from simple ludological underpinnings: every goal can be
expressed in terms of some qualities that have attained cer-
tain values. This design constraint greatly limits ‘program-
ming scope’, and can prevent it from taking over an IDN
project (Jones 2022).

Unlike traditional hypertexts with explicit link structures,
connectivity between passages in a sculptural hypertext is
unknown until playtime, because it is dynamically produced
by the combination of game state (in terms of qualities) and
the content selection procedure - i.e. which available pas-
sages from the current ‘deck’ (as a function of world state)

are presented to the player in any given ‘hand’ of choices.
Many full-scale commercial games, such as Fallen Lon-

don, Hades (per People Make Games (2020)), and I Was A
Teenage Exocolonist, have been written primarily in QBN.
Yet dedicated languages of QBN like Dendry are unusual;
both QBN and sculptural hypertext are often embedded in-
side of other scripting languages, as Jones describes. For ex-
ample, Hades is scripted in Lua, and Facade is scripted in
ABL (Mateas and Stern 2005).

IDN Authoring Tools
A recent survey of IDN authoring tools (Green, Hargood,
and Charles 2021) has found that narrative designers prefer
tools that visualize the structure and connectivity of a story
volume. They are also interested in tools that enable focused
playtesting sessions, and in tools that encourage novice de-
signers to experiment with branching.

In a broader sense, IDN authoring tools are a kind of
IDE used by artists and teachers to explore an interactive
medium. McNutt, Outkine, and Chugh (2023) have tested
IDE features ranging from simple code linting, to inline code
evaluation, to bidirectional manipulation of a generated arti-
fact. DendryScope uses an intermediate heatmap visualiza-
tion as the interactive surface for structured user input, such
as placing ‘pins’ to refine a query.

Narrative designers must reason both as authors and as
game designers. Cardona-Rivera, Zagal, and Debus (2020)
describe narrative games in terms of two parallel goal hier-
archies: narrative goals forming a descending chain of rea-
soning, and ludological goals forming an ascending chain of
causality. For example, I might (narratively) want to open
the door, and therefore need the key; at the same time, I
would (ludologically) enable the ‘open door’ verb by getting
my ‘key’ quality to 1 instead of 0. The narrative designer can
cleverly align their player’s narrative goals with the logic of
which qualities they intend to track, as we will see in Bee.

Automated Playtesting in Hypertext and IF
The goal of playtesting is often to characterize the possible
playtraces of a given sculptural hypertext. Each such play-
trace is a sequence of passages (Figure 3) that a player could
visit, determined by the preconditions and postconditions of
each passage, and assuming the content selection procedure
presents each passage at the relevant step.

We do not claim that automated playtesting strategies in-
corporate any knowledge of narrative goals at all. Rather,
they are designed to help narrative designers diagnose is-
sues with a set of ludological goals intended to parallel those
narrative goals. To this end, we review existing playtesting
strategies used by narrative designers.

Traversal Statistics An automated playtesting strategy
can produce thousands of playtraces in a short time. As
mass-generated playtraces tend to repeat large sections of
play, to the point that reviewing them one-by-one is tedious,
they should be aggregated or visualized. Indeed, statistical
summaries of thousands of playtraces are commonly used
by authors using ChoiceScript, Dendry, and custom narra-



Figure 2: In sculptural hypertext, a storylet consists of three
authored fragments: preconditions to check against state,
postconditions to apply over state, and the passage of text
that the player sees. In Dendry, a scene is typically a directed
acyclic graph of linked storylets.

tive systems; an example of the latter is documented by the
authors of Ice-Bound (Garbe et al. 2014).

A conventional traversal summary strategy is to count the
percentage of sampled playtraces that saw each passage. In
extending this idea to their own system of sculptural hy-
pertext, the Ice-Bound authors understand their playtesting
strategy as a ‘level profiler’ which locates combinations of
‘symbols’ (i.e. those qualities a player could have or ac-
quire in a given level) that are insufficiently ‘fleshed out’
by passages corresponding to that combination. In other
words, their histogram visualization aggregates many play-
traces over time and instance according to state - in this case,
the availability of various combinations of symbols.

Traversal Diagrams Recent work by Veloso and Prada
(2021) produced the Story Validator IDE for Twine games,
which produces a skein-like view of playtraces by automat-
ically generating the graph of possible links between pas-
sages. Their enumeration strategy relies on a greedy graph
search heuristic, based on weights the designer assigns to
each quality. They visualize the resulting playtraces in a flow
chart, which aggregates all the possible orderings into a se-
quence of passages over time. Prior work in IDN author-
ing tools for Twine have explored this concept using heuris-
tic traversal strategies (Shibolet, Knoller, and Koenitz 2018;
Oliver and Smith 2018). Similarly, the Inform 7 skein (Nel-
son 2006) is a flow chart produced from world state in an
IF game, i.e. an IDN where passages are dynamically com-
posed together according to complex world state. Inform’s
skein is constructed manually, as the author supplies each
possible (partial) playtrace by playing through their own
game. This makes it suitable for asking questions about
choice points that ensue after the first few beats of the game,
but not about skeins in the mid-game or late-game.

A symbolic approach, quite similar to the one we use in
DendryScope, to enumerating Twine playtraces was demon-

strated by Oliver and Smith (2018), who summarized these
in terms of values that variables could attain, and end-
tagged passages that could be reached.

Symbolic Playtesting Narrative design tasks involving
the story volume can be facilitated by using modern answer
set programming (ASP) systems to implement playtesting
strategies. ASP is applicable when the possible values of
game state variables can be modeled as a finite set, the length
of interesting playtraces can be bounded, and the rules for
how the state should be updated in response to each avail-
able player choice can be expressed with rules in symbolic
logic. For example, there are solver-based authoring tools
that support level designers creating difficulty progression
in educational puzzle games (Butler et al. 2013). In the IDN
context, every solution of the answer set program is a dis-
tinct playtrace of the IDN.

Player behavior can be modeled as certain constraints,
such as ‘I will reach this particular ending’. This playtesting
strategy has been demonstrated in PlotEx (Plotkin 2012), a
tool created by the author of Hadean Lands to guarantee that
all four endings in his Inform 7 code were reachable. Each
door in the game requires specific resources to open, and
certain resources are consumed thereby, so it is not apparent
which resources should be located behind which doors. If
an ending did prove to be unreachable, then Plotkin would
need to make specific resources available earlier or in greater
quantity at certain points in the game; or otherwise, make
certain doors barring the endgame less demanding to open.

In PlotEx, sets of constraints are understood as a kind
of unit test, which can be run against the latest develop-
ment build of an IDN in order to spot regressions. In Lu-
docore (Smith, Nelson, and Mateas 2010), these are called
speculative assumptions, because they represent constraints
on play styles that apply to some scenarios and not others. In
the context of DendryScope, we will call these queries. All
three of the above systems may be construed as story plan-
ners in the domain of a particular IDN or gameplay model,
which produce (all possible) examples from that story vol-
ume.

Methods
We now identify the elementary passages in Dendry’s au-
thoring language, and how they relate to the changing value
of qualities over time in a given playtrace. Our symbolic
analysis strategy is to enumerate all playtraces which satisfy
a given query, which we will call a skein. The empty query
corresponds to the universal skein, containing all possible
playthroughs of the given QBN.

The Dendry Authoring Language
We chose to build the DendryScope prototype on top of
the Dendry language (Fig. 2): it is narrowly scoped around
QBN, its compiler is open-source, and the complete source
of Bee is available. However, any language of IDN that
can be expressed in terms of ASP rules is amenable to our
overall strategy, and any QBN can be represented in the
DendryScope interface.

The Dendry language includes three kinds of storylet:



Figure 3: Each playtrace in the skein of a sculptural hypertext (in this example, a QBN) is a possible sequence of storylets. Left:
A skein with two playtraces: passages B and C can be seen in either order, but both must be seen before D. Right: A skein with
one playtrace: Either Y or Z must follow X. The precondition of Y is unsatisfiable, so AXZ is the only possible playtrace.

• Top-level scenes, which are accessible from the
player’s hand of choices.

• Linked choices, which either link to further choices or
exit to the player’s hand.

• The player’s hand, which contains a small number
of top-level scenes whose preconditions are met. The
player decides which to pursue next.

The postconditions of every Dendry storylet describe how
to transform the state of qualities from one timestep to the
next, influencing which storylets’ preconditions can be satis-
fied on the next timestep. In Bee, none of the qualities attain
values outside of a small integer range (from -1 to +24); in
general, knowing the range of each quality is useful to speed
up ASP grounding.

Every Dendry scene file consists of scene and choice
storylets, and has a Markdown-like representation1. These
correspond to scenes in the sculptural hypertext system
Lume (Mason, Stagg, and Wardrip-Fruin 2019), whose au-
thors likewise chose to embed branch-and-bottleneck choice
structures (i.e. DAGs) inside of content selection, as a sensi-
ble unit of authoring.

Reducing Dendry Traversals to ASP
In the literature of answer set programming (ASP), it is com-
mon to sketch an ASP formulation in terms of which logi-
cal facts the solver is allowed to nondeterminstically guess,
which facts the solver must deduce from others, and which

1For example, scenes in Bee are represented by .scene.dry
files found in its repository: https://github.com/aucchen/bee/blob/
master/source/scenes/church.scene.dry

potential facts the solver must forbid from appearing in so-
lutions to be enumerated.

In our formalization of Dendry, we say the solver must
guess exactly one passage to select for display among those
passages that have their preconditions satisfied by the cur-
rent quality values. From the sequence of selected passages,
we deduce the evolution of quality values over time, influ-
encing which passages are available.

Finally, we forbid solutions that do no respect the user’s
query conditions: we reject solutions that do not satisfy all
goals (scenes that need to play at least once), poisons (scenes
that must never play), and pins (scenes that must play at least
once on the specified timestep).

DendryScope is implemented using the clingo ASP
solver (Gebser et al. 2019) through its WebAssembly
port (Moritz 2022). Rather than asking the solver for just
one satisfying solution, we systematically enumerate a few
hundred solutions. These concrete examples allow the de-
signer to observe differences in state between playtraces.

Applying clingo’s brave enumeration (a form of pro-
jected enumeration that efficiently computes the union of all
of a program’s answer sets), we also obtain the complete set
of which passages could be seen at which timesteps while
abiding by the query conditions, without directly construct-
ing every playtrace.

Full implementation details, including our exact traver-
sal strategy and our method of tracking integer-valued qual-
ity variables over time, can be found in our system’s source
code at: github.com/JazzTap/DendryScope.



Figure 4: Worked example of reading a skein, and using a goal to discover implicit structure from subskeins. Four rows corre-
spond to four Dendry passages. Each grey cell shows that some traces hit that passage at that timestep. We set ’B’ as a query
goal, and recalculate the skein (which now contains only playtraces visiting ’B’). Now if the playtraces ’ABC’ and ’ACB’ exist,
then B and C are not mutually exclusive (’OR World’). Conversely, if C disappears from the skein, then B and C must exclude
each other (’XOR World’), and (in this case) some offscreen passage X explains the trace that sees B at step 3.

Visualization in DendryScope
In addition to formalizing the QBN domain, we created a
frontend for query design via direct annotation of playtesting
information in the form of a skein, i.e. the set of playtraces
satisfying a given query. The visual skein interface makes
it easier to read and write DendryScope queries than work-
ing from scratch. We foresee the narrative designer loading
their own Dendry story, but for evaluation purposes, we pre-
compiled Bee from Dendry to ASP.

Visualizing ASP Queries as a Skein
Upon loading their story in DendryScope, the designer will
see a skein corresponding to their QBN, similar to Fig. 4. In
our demo, this skein contains the first 20 steps of playtesting
results for the empty query (i.e. ’What passages can I see?’).
From here, they may relax the time horizon (as we chose an
arbitrary value, to avoid timing out on long QBNs), or refine
the query by directly manipulating storylets and steps in the
heatmap.

The skein is represented by a heatmap whose cells corre-
spond to the timestep vs. current storylet. Each cell counts
the number of concrete playtraces that have seen it, and more
playtraces corresponds to a darker blue (Fig. 5). This num-
ber can be zero, because cells may be observed by brave
enumeration without corresponding to a concrete playtrace.

Because scenes (and all storylets therein) are automati-
cally sorted by the first time they are observed, the skein
appears linear where the player is certainly in a given scene
at a given time (i.e. where the story volume is constricted),

and appears diffuse where there are many possible passages
the player could be in.

The initial skein corresponds to the empty query, return-
ing all possible playtraces. Adding terms to the query pro-
duces subskeins (Fig. 6), corresponding to a more specific
scenario. Each DendryScope query produces a fixed skein,
up to four tuning parameters: a timestep horizon, a maxi-
mum number of constructed playtraces, a maximum itera-
tion count on bravely-enumerated playtraces, and a timeout.

DendryScope includes graphical tools for browsing
scenes by their tags, and for viewing complete scene trees.
In the scene tree widget, storylets whose title is highlighted
in blue were visited by a concrete playtrace in the current
query; storylets highlighted in grey are possible and have
been enumerated, but not constructed. Storylets that are not
highlighted cannot be reached given the current query.

Visualizations of State Across Related Playtraces
Each cell in the skein corresponds to a certain passage at a
certain timestep in a set of visiting playtraces, but each of
these playtraces has its own world state. In the skein, we
broke out the ’current passage’ as the most salient element
of world state, but many more visualizations of this dataset
are possible. For example, the narrative designers we inter-
viewed wanted to know what values could be attained by
specific qualities at various cells in the skein.

The preliminary state visualization widget in
DendryScope is a heatmap of quality versus value, de-
scribing the final observed state of each playtrace that



touches the given cell. Although it is clearly more intuitive
to produce the state of each playtrace as observed at the
given timestep, the time cost of writing all state at all
timesteps of all playtraces was excessive in our naive imple-
mentation. Besides, the AST of the IDN provides enough
information to reconstruct (up to an arbitrary timestep)
the state of every playtrace from its ordering of passages,
although we did not implement this function.

Designer Tasks
We conducted a data-first design study (Oppermann and
Munzner 2020) to identify narrative designers’ existing
playtesting strategies, taking Bee itself as our dataset (shown
in Figure 5). Bee is a QBN written by Emily Short in
2012, which follows the life of a home-schooled girl who
is training for a spelling bee. Designers used the proto-
type DendryScope interface (Fig. 1) to read skeins and write
queries according to their interest.

We recruited five narrative designers for these interviews,
using a snowball sampling technique. All five narrative de-
signers (including co-authors) were familiar with reading
sculptural hypertext in videogames such as Fallen London
and Hades. Each designer has written games in languages
that implement sculptural hypertext, including ChoiceScript,
Inform 7, and languages of their own design. Five of the
six designers were familiar with Fallen London (Failbetter
Games 2009), a long-running work of QBN which Emily
Short has worked on. Two of the designers were familiar
with Bee itself prior to the study. A mixture of three aca-
demic programs and three industry backgrounds are repre-
sented across the five designers.

One designer became a co-author on the paper, so their in-
terview was omitted from coding, although their insights re-
main in this paper. By coding the remaining four interviews,
we identified seven tasks that narrative designers perform
while writing or revising IDN.

Narrative Designer Tasks:

T1: Interpret the game’s source code as a story volume.

T2: Answer story progression questions about the story vol-
ume. Is this passage reachable?

T3: Model player behavior as it influences the story vol-
ume. Are there rare or difficult-to-reach passages that
might become player goals?

T4: Identify subsets of playtraces that correspond to certain
player knowledge, or lack thereof.

T5: Understand how subsets of playtraces correspond to the
query, and rewrite the query if it does not match the
intended scenario.

T6: Discover how long it can or must take the player to
reach a certain passage, including passages near the end
of long stories.

T7: Develop flexible and powerful authoring patterns, such
as scenes and other branching structures; or menaces
and other kinds of qualities.

Evaluation
Our semi-structured interview process was designed to
gather information about the four narrative designers’ ex-
perience working with DendryScope for the first time. We
wanted to understand whether the underlying ASP solver
could be controlled by designers without prior solver-
specific experience, through their own domain knowledge
and our data-driven interface.

The first 10 minutes of each interview introduced Bee.
The interviewer then asked the designer to describe struc-
tural features of Bee in Dendryscope’s skein view (Figure 5),
up to and including endings of the game. The interview take-
aways below are organized according to the seven tasks we
identified from the interviews.

T1 - Reading the Story Volume
The DendryScope skein visualization is “like an extra
sense,” said one designer. Another designer reported, “The
tool might be able to surface combinations of things much
more easily than a human could, because of the sheer num-
ber of combinations possible. The exhaustive approach that
a machine can take allows you to see the possibility space
way easier than just playtesting it.”

In this paper, we have treated traditional playtesting as a
form of search over skeins. In practice, experienced design-
ers described playtesting using language about the player
experience. “If I get here, what are the qualities I need to
have had?” We found that, regardless of what combinatorial
framework or experiential goal is being interrogated by a
particular narrative designer, the skein allowed us to discuss
both specific passages in the context of the game, and pos-
sible ways in which players could have reached those mo-
ments.

T2 - Answering Story Progression Questions
We found that the designers were not only anticipating spe-
cific routes through the game, but also that they were inter-
ested in supporting variation along any given route. “I al-
most want to be playing [...] whatever the normal way to do
it is, and then having this as some kind of ‘what could have
happened’ off to the side?”

One of the designers recounted their process in establish-
ing the consequences of early player choices. They under-
stood one such mechanic as a quality that can build past a
certain threshold, and were interested in discovering what
values that quality can possibly attain at certain points in the
story.

“Let’s imagine you were writing something where the
player was able to take on a role, but there were a cou-
ple of different roles possible. If you had challenges
which you could solve by punching your way through
or talking way through. Then, seeing it’s not actually
possible for my punching score to be very high in this
area. I didn’t know that [either] I shouldn’t have had
this choice here, or I should have given more oppor-
tunities to raise [punching] earlier.”

This designer is interested in not wasting authoring effort:
if a scene in the story responds to a quality past a certain



Figure 5: Screenshot of the DendryScope visualization of a skein in Emily Short’s Bee. The user has clicked on the passage
lessons with sara, setting it as the goal: it must be seen in each playtrace matching this query. This skein has been
zoomed into steps 18 – 30 using the histogram (counting distinct passages at each timestep) on top. Gray cells show all possible
passages at each step across all playtraces. Cells highlighted in blue have been observed in a concrete playtrace, with a deeper
blue for more playtraces hitting that cell. The expressive range (Smith and Whitehead 2010) of a family of playtraces hitting a
certain cell can be inspected by hovering over it.

Figure 6: The result of refining the previous query (Fig. 5) by pinning the lessons with sara visit to step 28 (rather
than step 27, the earliest possible moment). The other two scenes visible in this part of the skein have changed. Moreover,
the ‘cloud’ of every other step at which we could enter the scene has now vanished. We confirm that lessons with sara
begins linearly, and branches near its end. The skein fans in toward lessons, and fans out from it.



threshold value, then they want to make sure that threshold
is actually attainable, so that the branch is reachable. They
said later, “It’s kind of a mystery at any given point in the
game, what [the range of values for this quality] might be.
Being able to actually visualize that looks wonderful.”

T3 - Modelling Player Behavior
The designers understood that DendryScope queries are not
themselves knowledgeable about player intent, unlike sta-
tistical models of players. One designer asked us, “There’s
going to be a disconnect between what the tool is modeling,
and how players actually would play through, right?”

The purpose of the DendryScope interface, therefore, is
to re-incorporate the narrative designer’s awareness of what
goals players might seek or be guided toward in the story
volume into their DendryScope query. We do not claim that
visual interfaces must be used in every context that involves
a query and its skein; but in the context of an IDE, they are
a useful way to orient the designer in the story volume.

T4 - Discovering Structure in Skeins
DendryScope supports the designer by visualizing the skein
of a query. Sculptural hypertexts can contain both branching
structure and complex multicursal structures, similarly to IF
games like Hadean Lands - and scenes can vary over time,
due to the complex world model. One designer explained,
“You can imagine a game where there was more of a puzzle
element to it and you could loop around a bunch of times
before figure out the option to move forward.”

Another designer described their reasoning while creating
a query: “And there are two opportunities, three, actually.
[...] So if I pin something extremely late - it’s going to give
me just a little bit of variation.”

“I think it really works like a cloud of possibilities. I said
that that was quite explicit here, where what we saw before
was quite a lot of different possible nodes. But now once
we’ve reduced the [scope to] what we actually wanted to
see, it linearized a lot.”

T5 - Discovering Missing Playtraces
Designers were not only able to reason about the presence of
playtraces which they did not anticipate, but also about the
absence of playtraces which they did expect to find.

Describing the doll quality in Bee, one designer talked
through writing a query for a certain absent playtrace, which
the DendryScope skein is designed to prevent (because prov-
ing nonexistence is expensive, and yields little information):

“I was thinking about when we did the doll thing ear-
lier if I could pin, or like customize a pin, say I want
[the doll] to happen at the 12th time step. And then
try to run that. Right now I can’t click it because [it]
didn’t do it. But okay, we knew that doll could happen
earlier. So, if it just isn’t possible, it would just give
me, that’s not possible. This is a deliberate interface
constraint, right?”

Another designer described a hypothetical scenario in
which an abundance of opportunities to increase some qual-

ity caused some content to be seen too often. They would
then want to write queries that show the passage is rare:

“Let’s say you have a choice which is supposed to
be possible, but only really possible if you’ve pushed
your choices in a certain way beforehand. But let’s
say you actually just balanced it wrong, and everyone
can reach that, or 75% of the time you can reach that.”

T6 - Dealing With Long Stories
Although DendryScope solutions are complete, in practice,
large story volumes with 30+ steps of lookahead slow down
the solver. As queries reach 10+ seconds of runtime, the de-
signer’s process of exploration is clearly impeded. We tried
to mitigate this issue with timeouts, but these produce trun-
cated sets of solutions, which can be misleading.

We found out that some queries take too long to run, and
interrupting runaway ASP is an important step in debugging.
While this is a natural action in command-line IDEs, we did
not have adequate support in the DendryScope interface dur-
ing the pilot. When a query contains a contradiction, the in-
terface should eventually time out; but the ideal threshold
might be a minute, or it might be ten seconds, depending on
the author’s debugging strategy. For longer response times,
we expect that both a fast approximate result and a time es-
timate for the full result would be useful.

One designer asked, “Is there any way to get real-time
feedback from the ASP, so that you could be populating the
view [as the solver runs]?” Because combinatorial explosion
is intrinsic to sculptural hypertext, as a medium of orderings,
we do not anticipate that all performance issues with large
DendryScope queries can be optimized away. Therefore, it
is important to learn from designers how they reason about
and use ‘poison’ in queries to block off irrelevant kinds of
playtrace.

T7 - Developing Authoring Patterns
In the course of understanding what qualities are used by
Short in Bee, our designers identified certain qualities with
mechanics from tabletop storygames that gate certain forms
of progress. “It’s Blades in the Dark that has [Countdowns],
it’s like the concept of [the spelling quality]. [...] A number
of different storylets could progress that clock [...] when that
clock hits 12 it unlocks new possibilities.”

Whilst spelling is a progress quality in Bee, Short
has also included menace qualities like parents (which
increases when the protagonist defies her parents) and
lettice (which increases when she clashes with her sis-
ter), that can lead to alternate endings of the game. Like in
tabletop games, it may be more narratively satisfying to end
Bee in a ‘loss’ of this kind; not only is the protagonist not
going to win the spelling bee, but she is also going to grow
apart from her family.

Short also includes thematic qualities such as
worldliness, which increases as the protagonist
gains experience with places outside of homeschooling
(like the hair salon); and poverty, which increases as the
protagonist discovers it is unusual to, say, barter homemade
jam in exchange for pantry items. These qualities do not



generally impact the reachability of any scenes (only certain
choices), but instead tend to reward and motivate reflective
choices which are thematically linked.

Findings
We divide the research contributions of this paper thus: with
implications for close readings of IDN on the one hand, and
implications for authors of IDN on the other. Either way,
the contribution of symbolic analysis is to support the narra-
tive designer by visualizing the skein. Once visualized, this
structure becomes more tangible to novices, and easier for
experts to compare with their own intuitions. Ultimately, we
view queries on QBN (and other forms of IDN) as a promis-
ing domain-specific language for future development.

The medium of ordering Ultimately, the passages in a
sculptural hypertext are fixed; what varies is which ones the
player encounters, and the order in which they appear. Or-
dering can constitute either diegetic or extra-diegetic choice,
in the terms of Peter Mawhorter’s choice poetics (Mawhorter
et al. 2014); which one can be ambiguous. For example,
Aaron Reed recounts (Reed 2017) his playthrough of Yoon
Ha Lee’s sculptural hypertext Winterstrike (Lee 2012) in
terms of progressing the Ice quality to reach a certain tragic
ending:

“I will need to build my own story of how I became
the person who had enough Ice to reach this particu-
lar goal, out of the various opportunities in the story
world [...] Perhaps if I keep investigating, I’ll find bet-
ter ways to increase this stat — better, for my own
personal sense of my character and their morality.”

Junius et al. call for research into the ordering of scenes
as a mechanism of dramatic agency (Junius, Mateas, and
Wardrip-Fruin 2019), describing many techniques used by
theater practitioners to modify a fixed script into a dramatic
experience for the performer - one that is rich with aware-
ness of the moment, and all the meanings it could have. Like
theater performers, IDN players do not have the power of an
author over the story, but rather the power of interpretation.

We propose that an IDN is ’reactive’ (Mason, Stagg, and
Wardrip-Fruin 2019) when the player takes part in the jux-
taposition of dramatic elements. Narrative designers do not
only reason about IDN in terms of state and reachability,
although these are powerful tools afforded by sculptural
hypertext formalisms, but simultaneously about narrative
causality and player agency.

For example, in Bee the player character is introduced
to an English tutor named sara, after much debate by
their parents. One of the first things they can ask Sara
is whether she is really a feminist, which Sara takes care
to explain is not actually a bad thing. Later, if the protag-
onist should run away from home (after tensions with their
parents reach a breaking point), one of the characters to
whom they can go is sara. This bespoke scene can occur
only if the player has met her (i.e. the value of the sara
quality is nonzero), and if they think this is the right choice
for the playthrough.

In-situ playtesting DendryScope is designed to assist au-
thors in maintaining their mental map of a story volume,
given the source code of their game. A future, dedicated
Dendry IDE should include features like syntax highlight-
ing, scene and choice stub generation, and line highlighting
upon compiler error, as well as access to the the queryable
DendryScope skein.

Storing queries We were asked to implement query sav-
ing features by one of the narrative designers. Without saved
queries, there is no way to revert from a failed query (i.e.
which produces an unexpected contradiction) to a good one.
Moreover, query saving would double up as query sharing,
as DendryScope queries (like raw ASP predicates) can be
encoded as URL argument strings.

Enhancing queries We envision pinning (Figure 6) as a
strategy for guiding sampling within the story volume, pro-
ducing colorful ‘stains’ of the skein corresponding to sto-
rylines within the IDN. Multiple colors of pin could repre-
sent divergence within a single skein. Also, pinning could
be implemented at the level of scenes (rather than passages),
allowing the relative ordering of scenes to vary without ex-
cluding alternative scenes of different length.

Conclusion
Our work demonstrates how symbolic artificial intelligence
can be applied to the story volume of works of IDN, and
help narrative designers address their authoring problems.
Conversely, we see this work as connecting narrative de-
sign expertise to the AI research tradition of plot generation,
through the medium of sculptural hypertext.

DendryScope translates the designer’s intent to examine a
portion of the story volume, through direct annotation of the
skein representation, into a suitable ASP query over play-
traces. We have described ‘goals’, ‘poison’, and ‘pin’ con-
straints in this paper. In the future, other types of queries
can be developed in terms of ASP to extract more nuanced
information from a given QBN.

From a practitioner’s perspective, we aim to raise aware-
ness among narrative designers of symbolic analysis as a
debugging technique. It is easy to start writing queries in
DendryScope: all five narrative designers we interviewed
could develop simple queries after exploring the interface
for about 30 minutes.

We hope to develop DendryScope further into a practical
tool with integrated script authoring, built-in detection of un-
reachable scenes and critical-path scenes, and useful debug-
ging feedback on complex queries. We believe that designers
would readily adopt an IDE for sculptural hypertext with a
playtesting capability that is as accessible as Twine and as
powerful as PlotEx.

Acknowledgements
We thank Bjarke A. Larsen, Leonardo Abate, Joey D. Jones,
and Maxwell Joslyn for contributing their time and expertise
as narrative designers.



References
Bernstein, M.; Millard, D. E.; and Weal, M. J. 2002. On
writing sculptural Hypertext. In Proceedings of the thir-
teenth ACM conference on Hypertext and hypermedia, HY-
PERTEXT ’02, 65–66. New York, NY, USA: Association
for Computing Machinery. ISBN 978-1-58113-477-3.
Butler, E.; Smith, A. M.; Liu, Y.-E.; and Popovic, Z. 2013.
A mixed-initiative tool for designing level progressions in
games. In Proceedings of the 26th annual ACM sympo-
sium on User interface software and technology, 377–386.
St. Andrews Scotland, United Kingdom: ACM. ISBN 978-
1-4503-2268-3.
Cardona-Rivera, R. E.; Zagal, J. P.; and Debus, M. S. 2020.
Narrative Goals in Games: A Novel Nexus of Story and
Gameplay. In International Conference on the Foundations
of Digital Games, 1–4. Bugibba Malta: ACM. ISBN 978-1-
4503-8807-8.
Deterding, S.; Hook, J.; Fiebrink, R.; Gillies, M.; Gow, J.;
Akten, M.; Smith, G.; Liapis, A.; and Compton, K. 2017.
Mixed-Initiative Creative Interfaces. In Proceedings of
the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, 628–635. Denver Colorado
USA: ACM. ISBN 978-1-4503-4656-6.
Failbetter Games. 2009. Fallen London. Digital game ac-
cessed 2023-09-01. Available online at: fallenlondon.com.
Garbe, J.; Reed, A. A.; Dickinson, M.; Wardrip-Fruin, N.;
and Mateas, M. 2014. Author Assistance Visualizations for
Ice-Bound, A Combinatorial Narrative. Foundations of Dig-
ital Games.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming, 19(1): 27–82. Publisher:
Cambridge University Press.
Green, D.; Hargood, C.; and Charles, F. 2021. Use of Tools:
UX Principles for Interactive Narrative Authoring Tools.
Journal on Computing and Cultural Heritage, 14(3): 1–25.
Grinblat, J.; Manning, C.; and Kreminski, M. 2021. Emer-
gent Narrative and Reparative Play. In Mitchell, A.; and
Vosmeer, M., eds., Interactive Storytelling, volume 13138,
208–216. Cham: Springer International Publishing. ISBN
978-3-030-92299-3 978-3-030-92300-6. Series Title: Lec-
ture Notes in Computer Science.
Jones, J. D. 2022. Authorial Burden. In Hargood, C.; Mil-
lard, D. E.; Mitchell, A.; and Spierling, U., eds., The Author-
ing Problem: Challenges in Supporting Authoring for Inter-
active Digital Narratives, Human–Computer Interaction Se-
ries, 47–63. Cham: Springer International Publishing. ISBN
978-3-031-05214-9.
Junius, N.; Mateas, M.; and Wardrip-Fruin, N. 2019. To-
wards expressive input for character dialogue in digital
games. In Proceedings of the 14th International Confer-
ence on the Foundations of Digital Games, 1–11. San Luis
Obispo California USA: ACM. ISBN 978-1-4503-7217-6.
Karth, I.; Junius, N.; and Kreminski, M. 2022. Constructing
a Catbox: Story Volume Poetics in Umineko no Naku Koro
ni. In Vosmeer, M.; and Holloway-Attaway, L., eds., Interac-
tive Storytelling, volume 13762, 455–470. Cham: Springer

International Publishing. ISBN 978-3-031-22297-9 978-3-
031-22298-6. Series Title: Lecture Notes in Computer Sci-
ence.
Kreminski, M.; and Wardrip-Fruin, N. 2018. Sketching a
Map of the Storylets Design Space. In Rouse, R.; Koenitz,
H.; and Haahr, M., eds., Interactive Storytelling, volume
11318, 160–164. Cham: Springer International Publishing.
ISBN 978-3-030-04027-7 978-3-030-04028-4. Series Title:
Lecture Notes in Computer Science.
Lee, Y. H. 2012. Winterstrike. Digital game accessed 2023-
09-01. Available online at: winterstrike.storynexus.com.
Mason, S.; Stagg, C.; and Wardrip-Fruin, N. 2019. Lume:
a system for procedural story generation. In Proceedings
of the 14th International Conference on the Foundations
of Digital Games, 1–9. San Luis Obispo California USA:
ACM. ISBN 978-1-4503-7217-6.
Mateas, M.; and Stern, A. 2005. Structuring Content in the
Façade Interactive Drama Architecture. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 1(1): 93–98. Number: 1.
Mawhorter, P.; Mateas, M.; Wardrip-Fruin, N.; and Jhala, A.
2014. Towards a Theory of Choice Poetics. Foundations of
Digital Games.
McNutt, A.; Outkine, A.; and Chugh, R. 2023. A
Study of Editor Features in a Creative Coding Classroom.
ArXiv:2301.13302 [cs].
Millard, D. E.; and Hargood, C. 2021. Hypertext as a Lens
into Interactive Digital Narrative. In Mitchell, A.; and Vos-
meer, M., eds., Interactive Storytelling, volume 13138, 509–
524. Cham: Springer International Publishing. ISBN 978-
3-030-92299-3 978-3-030-92300-6. Series Title: Lecture
Notes in Computer Science.
Millington, I.; and Chen, A. 2015. Dendry. Soft-
ware accessed 2023-05-25. Available online at:
github.com/aucchen/dendry.
Mitchell, A. 2022. Writing for Replay: Supporting the Au-
thoring of Kaleidoscopic Interactive Narratives. In Hargood,
C.; Millard, D. E.; Mitchell, A.; and Spierling, U., eds., The
Authoring Problem: Challenges in Supporting Authoring for
Interactive Digital Narratives, Human–Computer Interac-
tion Series, 131–145. Cham: Springer International Publish-
ing. ISBN 978-3-031-05214-9.
Moritz, D. 2022. Hello Clingo. Software accessed 2023-05-
26. Available online at: observablehq.com/@cmudig/clingo.
Nelson, G. 2006. Natural language, semantic analysis, and
interactive fiction. IF Theory Reader, 141(99): 104.
Oliver, E.; and Smith, A. M. 2018. Twinealyzer: Static
Analysis for Twine Games. Software accessed 2023-05-16.
Available online at: twinealyzer.org.
Oppermann, M.; and Munzner, T. 2020. Data-First Visu-
alization Design Studies. arXiv:2009.01785 [cs]. ArXiv:
2009.01785.
People Make Games. 2020. The System Be-
hind Hades’ Astounding Dialogue. Video es-
say accessed 2023-05-26. Available online at:
youtube.com/watch?v=bwdYL0KFA U.



Plotkin, A. 2012. PlotEx: a tool for exploring puzzle plot
constraints. Software accessed 2023-05-26. Available online
at: eblong.com/zarf/plotex/.
Reed, A. 2017. Changeful Tales: Design-Driven Approaches
Toward More Expressive Storygames. Ph.D. thesis, UC
Santa Cruz.
Shibolet, Y.; Knoller, N.; and Koenitz, H. 2018. A Frame-
work for Classifying and Describing Authoring Tools for In-
teractive Digital Narrative. In Rouse, R.; Koenitz, H.; and
Haahr, M., eds., Interactive Storytelling, Lecture Notes in
Computer Science, 523–533. Cham: Springer International
Publishing. ISBN 978-3-030-04028-4.
Short, E. 2012. Bee. Digital game ac-
cessed 2023-05-25. Available online at:
ifdb.org/viewgame?id=8pe83e92v4nvabic.
Smith, A. M.; and Mateas, M. 2011. Answer Set Program-
ming for Procedural Content Generation: A Design Space
Approach. IEEE Transactions on Computational Intelli-
gence and AI in Games, 3(3): 187–200. Conference Name:
IEEE Transactions on Computational Intelligence and AI in
Games.
Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010. LUDO-
CORE: A logical game engine for modeling videogames.
In Proceedings of the 2010 IEEE Conference on Computa-
tional Intelligence and Games, 91–98. Copenhagen, Den-
mark: IEEE. ISBN 978-1-4244-6295-7.
Smith, G.; and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 1–
7. Monterey California: ACM. ISBN 978-1-4503-0023-0.
Veloso, C.; and Prada, R. 2021. Validating the plot of Inter-
active Narrative games. In 2021 IEEE Conference on Games
(CoG), 01–08. ISSN: 2325-4289.


