
Approaches to Modelling a Predator-Prey System in 2D Space

Jasmine Otto

June 12, 2015

Abstract

We compare two approaches to simulating predator-prey dynamics with spatial e�ects: as an agent-
based system, and as a variant of reaction-di�usion. As a system of agents, we observe that rare predator
success and slow predator respone to an increase in prey numbers both reduce the magnitude of oscilla-
tions, reducing the chances of an extinction. Apart from the consequences of discretization error (such
as extinctions) and of a stochastic component in predator and prey growth rates, the agent-based model
agrees with the Lotka-Volterra model of population dynamics. In our PDE-based reaction-di�usion
model, oscillations initially occur over space instead of time. These spatial oscillations disappear once
the space is saturated; the subsequent temporal oscillations are dampened over time, especially by �xed
boundary conditions and/or self-limitation of prey, and eventually disappear.

1 Background

We will investigate predator-prey relationships in terms of population dynamics, additionally introducing
spatial e�ects. In so doing, we seek to better understand the trophic web (generalizing the notion of 'food
chain'), and thereby its parent ecology. Moreover, we will explore two distinct approaches to simulating
group dynamics - by treating species in terms of individual agents, or as quantities in �ux.

We begin with the ODE (ordinary di�erential equation) model of population dynamics alone. We let
the growth rate of the prey increase with the prey population (initially, at least) and decrease with the #
of prey-predator interactions. We let the growth rate of the predator population increase with said # of
interactions and decrease with the predator population (i.e. competition leading to self-limitation).

Algorithm 1 Lotka-Volterra predator-prey equations, with self-limitation of prey.

du

dt
= αu (1− u)− βuv

dv

dt
= βuv − γv

u, v are functions of time, t. α, β, γ are positive constants.
We require that u(t), v(t) ∈ [0, 1]∀t. Observe that u (1− u) is positive if and only if u < 1, and so the
carrying capacity of species u is 1.

When the initial population of both species is small, prey numbers tend to rise, followed by predator
numbers - leading to a crash in prey numbers, followed by a crash in predator numbers, and then the cycle
repeats. In the absence of di�usion, this leads to oscillatory behavior in time. Observe also that whilst the
prey can persist without the predator, the predator cannot persist without the prey.

We will discuss both some results from and the technical tradeo�s of an agent-based and PDE-based
approach to implementing spatial e�ects. PDEs (partial di�erential equations) generalize ODEs to multiple
dimensions (e.g. 2d space in addition to time), whereas agents are de�ned in terms of individuals' behavior
rather than the more abstract notion of a population's behavior.

In an agent-based system implemented in Repast (an agent-based modelling framework), with discrete
population and stochastic predator-prey interactions, the model is prone to extinction events when 'down-
swings' are severe (i.e. the amplitude of the oscillations is large).

1

Figure 1: (a) Oscillatory steady state, in the absence of self-limitation of prey. α = .5, β = 1, γ = .4.
(b) Dampened oscillatory steady state. α = .5, β = 1, γ = .4.

no prey growth

no predator growth

prey

#
 p

re
d
a
to

rs →

→

→ →

Figure 2: Limit cycle determined by nullclines (e.g. du
dt = 0) in the phase space.

In PDE-based systems with di�usion over space, we will show by numerical simulation in Jython that the
oscillation occurs over space instead, until the (�nite) space is saturated. The oscillations thereafter occur
in time, but only if the prey-population is not self-limiting and the space lacks a �xed boundary with �xed
population, as either su�ces to dampen (eventually eliminating) the oscillations.

2 An Agent-Based Model

2.1 Description

Our initial approach was to model directly the behavior of individuals and analyze the resulting dynamics
- an AI-like approach. An agent-based model was used, wherin each 'agent' decides where to go at each
timestep (based upon its current surroundings, but also its current state), and collision with another agent
counts as an interaction.

2.2 Results

Emergent behavior leads to population oscillations resembling the Lotka-Volterra equations (Figure 1), with
the exception that a population may become extinct at zero population. Since predators cannot survive
without prey, either both species persist, only the prey do, or neither does.

Depending on the prey population's 'average' growth rate during a given upswing (which becomes neg-
ative at some critical predator density), oscillations in their population tend to vary in magnitude. Larger
oscillations seem more likely to end with an extinction, as the excess predators responding to the windfall of

2

Algorithm 2 An agent-based model of predator-prey dynamics.

We begin with no grass, 100 prey, and 10 predators.
Patches potentially containing grass form a 32-by-32 grid on a torus.
Prey and predators start at random locations on the torus.

Grass

• Fertility is an integer between 0 and 8, randomly generated at initialization.
• The fertility is the maximum amount of grass on the patch.
• Grass regenerates by 1 level with a 1% chance each tick.

Prey

• Dies if overstressed (stress > 300) or caught by a predator. Stress ticks up slowly (+1 / tick). Travels at
a �xed speed.
• Grazes when patch is not bare and not being hunted, depleting the patch and reducing own stress.
• Unless sated, moves towards as empty (of agents) a neighboring patch as it can �nd.
• Reproduces (asexually, producing one o�spring) when stress is low, slightly raising stress (+25).

Predator

• Dies if overstressed (stress > 300). Stress ticks up quickly (+10 / tick). Travels at a �xed speed.
• Tags a single prey (randomly picking from those within a 3-tile radius) when not sated, not hunting, and
there is prey within said radius. Immediately begins hunting tagged prey.
• Each tick when hunting, catches the tagged prey if it is on a neighboring tile, reducing own stress.
Otherwise, the hunt has a 50% chance of arbitrarily failing, recurring each tick.
- If the hunt continues, the predator travels towards the prey's current location.

• When not hunting, moves forwards, with a 1% chance each tick of randomly changing direction.
• Reproduces (asexually, producing one o�spring) when stress is low (and a short cooldown since it last
reproduced is cleared), massively raising stress (+275).

prey may fail to die o� (or 'depart forever') quickly enough afterwards. The magnitude of oscillations can
be constrained by introducing self-limitation of prey, such as competition for grass.

The exact prey growth rate involves a stochastic component, which gives rise to minor oscillations (where
the prey population dips but recovers without a collapse of the predator population) and to variable period
and magnitude in the major oscillations.

Both predator satiation and hunting failure reduce the rate of prey depletion, by reducing the number of
active predators and decreasing the rate of prey capture per active predator, respectively. This reduces the
chances of discretization error resulting in prey extinction (which is unrecoverable for lack of migrants).

The rate at which predators respond to high prey pop, low prey pop, is also determined by predator
reproduction rate; if it is too high, the predators respond too quickly to high prey availability - the subse-
quent boom in their numbers tends to cause prey extinction (leading immediately to predator extinction).
Alternatively, reducing the bene�t gained from each prey item to the point where the predator population
does not grow produces a stable, non-oscillatory stable state.

2.3 Technical

Our initial simulation in non-dedicated software (Scala) encountered e�ciency issues. We switched to Repast
Simphony (atop Groovy), which is optimized for simulating agents, but not especially well documented, and
di�cult to debug due to being interpreted instead of compiled. Little extension beyond the original feature
set was accomplished; using some lighter-weight library for the simulation of agents would be preferable.

Currently, reproducibility of runs requires saving the random number generator seed, since some decisions
made by agents are random. Given a su�ciently complex simulation, it should be useful to be able to
reproduce runs (if some initial conditions are randomly generated, they should be saved), and to record

3

Figure 3: Visualization produced by a run of the agent-based simulation, with generated population graph
to right.

output variables such as the per capita growth rate (over time) of each species.

2.4 Further Goals

• Track the spatial distribution of agents. Does it correspond to the fertility of the underlying grass? If
impassable tiles and simple path�nding were implemented, would it re�ect the presence of bottlenecks?
If heredity were implemented, would subspecies arise?

• Make stressed prey slower than unstressed prey, so that hereditary preference for stressed prey when
hunting is adaptive, should that be implemented. Unstressed prey can then be faster than predators,
in general, so that hunt failure is no longer arbitrary.

� Besides allowing healthy prey a 'speed refuge' from predators, we may allow any prey to use one
of a small number of 'hidden refuges' so long as it is unoccupied - although any decision(s) made
by agents introduce a surfeit of complexity-increasing parameters.

• Add a rule that gives prey safety in numbers. Attempt to develop (either by explicit declaration or
by long process of simulated evolution) prey behaviors which exploit this rule, and predator behaviors
that circumvent it.

• Force grass to reseed depleted tiles, so that areas can become depleted. Determine conditions under
which predators successfully exert top-down control on prey populations, preventing grass extinction.

3 A PDE Model

3.1 Description

Following presentation of the agent-based approach, our revised plan became to model the behavior of
populations rather than that of discrete individuals via a reaction-di�usion equation - like those used in
cellular biology to model reaction dynamics and pattern formation (as in growth & development). This
results in a simpler model which is less prone to tipping into a failure state, whilst retaining substantial
descriptive power.

4

Algorithm 3 Same as Algorithm 1, but with di�usion term.

du

dt
= αu (1− u)− βuv −D∇2u

dv

dt
= βuv − γv −D∇2v

We discretized space via a crude �nite di�erence method. We solved the resulting system of ODEs
iteratively over discrete time. For our purposes - capturing qualitative behavior, - this level of approximation
appears to su�ce.

3.2 Results

We saw spatial oscillations until the space became saturated, then rapid (or immediate) convergence to a
non-oscillatory steady state. When neither self-limitation of prey nor �xed boundaries were present, the
oscillations over time (following saturation of the space) persisted much longer (Figure 4b).

See Figures 4, 5. For all runs, we used parameter values α = .5, β = 1, γ = .4 and a 100x100 grid.

3.3 Technical

We implemented this model in Jython, and were thus able to use Processing for visualization. We converted
the PDE to a system of ODEs via �nite di�erence method on a rectangular grid. We computed the time-
course of the PDE iteratively, over discrete time, using the �rst-order Runge-Kutta method (whose accuracy
appeared to su�ce).

3.4 Further Goals

Using the reaction-di�usion approach, we may implement 'high-level' interpretations of many of the same
ideas as proposed for the agent-based model. Speci�ally, what if not every tile has the same carrying
capacity? What if concentrated prey are resilient to predation? What if grass is modelled explicitly, as a
third species subject to di�usion?

Although reaction-di�usion models cannot track individuals (except in a statistical sense), they su�ce
to capture emergent behavior - that is, the consequences of group dynamics.

4 Conclusion

We �nd a distinction between AI-like approaches (concentrating on the details of interaction between in-
dividuals with complex state) and development-like approaches (concentrating on the interactions between
species with simple state) to modelling group dynamics. Either can be used to model both temporal and
spatial e�ects, but the complexity of the AI-like approach seems more di�cult to manage as the model's
scope expands.

In the course of this initial foray, we chose to examine predator-prey dynamics. The population dynamics
of our agent-based model behave like the Lotka-Volterra equations, up to discretization error, as expected.
(Slow predator response to increasing prey population, with rapid predator response to decreasing prey
population, appeared necessary to prevent extinctions.) Except when discretization error predominates, at
small population sizes, we conclude that systems of ODEs are suitable for simulating ecological phenomena.

Generalizing from ODEs to PDEs is then a natural way to introduce spatial dynamics. It appears that
di�usion alone (when not dominated by boundary conditions or prey self-limitation) su�ces to dampen
predator-prey oscillations when migration between locales is possible.

Studying predator-prey dynamics alone, considerable future work appears possible. Greater quantitative
rigor may also be desirable, to be achieved using techniques from statistics (for agent-based models) and
numerical simulation (for PDE models).

5

Figure 4: Visualization of a run (a) on a rectangle with boundaries �xed at (u, v) = (0, 0) and (b) on a torus,
without self-limitation of prey. Blue represents the predator population in each tile, and green represents
the prey population.

Figure 5: Visualization of a run (a) on a rectangle with boundaries �xed at (u, v) = (0, 0) and (b) on a torus,
with self-limitation of prey. Note that the stable-state predator population is now much lower (actually
about half as big), whereas the stable-state prey population is actually slightly higher.

6

Code Appendix

Algorithm 4 Jython code for our PDE model.

W = 100; H = 100; scale = 8

class Cell(object):

def __init__(self , u, v):

self.var = [u, v]

class Boundary(Cell):

def __init__(self): # assuming boundary conditions are '0 at all points '

self.var = [0, 0]

cells = [[Boundary () if (i == H or j == W) else Cell(0, 0) \

for j in range(W+1)] for i in range(H+1)]

cells [0][0] = Cell (1,1)

to remove boundary & make space toroidal

(FIXME: upper and left border are too large , as cells[i][0] == cells[i][-1].)

for j in range(W): cells[W][j] = cells [0][j]

for i in range(H): cells[i][H] = cells[i][0]

cells[H][W] = cells [0][0]

idx_u = 0; idx_v = 1

def neighbors(i, j, c = cells): # assuming a square grid:

return [(c[i-1][j], c[i+1][j]), (c[i][j-1], c[i][j+1])]

def laplacian(idx , i,j):

c = cells[i][j]; accel = []

for (n0, n1) in neighbors(i, j):

diffL = c.var[idx] - n0.var[idx]

diffR = n1.var[idx] - c.var[idx]

accel += [diffR - diffL]

return accel

def diffuse(idx):

laps = [[laplacian(idx , i,j) for j in range(W)] for i in range(H)]

mags = [[sum(lap) for lap in row] for row in laps]

print idx , ':', cells [1][1]. var[idx], laps [1][1] , mags [1][1]

for i in range(H):

for j in range(W):

cells[i][j].var[idx] += .1 * mags[i][j]

def react(f):

for i in range(H):

for j in range(W):

tmp = cells[i][j].var

for k in range(len(f)):

cells[i][j].var[k] += f[k](*tmp)

f_u = lambda u,v: .5*u*(1-u) - u*v # with self -limitation of prey

f_u = lambda u,v: .5*u - u*v # without

f_v = lambda u,v: u*v - .4*v

SNIPPED: window setup , drawing calls

def update ():

diffuse(idx_u); diffuse(idx_v) # FIXME: compute both components

react ([f_u , f_v]) # of du/dt before updating u

7

